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Quantum chaos algorithms and dissipative decoherence with quantum trajectories
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Using the methods of quantum trajectories we investigate the effects of dissipative decoherence in a quan-
tum computer algorithm simulating dynamics in various regimes of quantum chaos including dynamical
localization, the quantum ergodic regime, and quasi-integrable motion. As an example we use the quantum
sawtooth algorithm which can be implemented in a polynomial number of quantum gates. It is shown that the
fidelity of quantum computation decays exponentially with time and that the decay rate is proportional to the
number of qubits, number of quantum gates, and per gate dissipation rate induced by external decoherence. In
the limit of strong dissipation the quantum algorithm generates a quantum attractor which may have a complex
or simple structure. We also compare the effects of dissipative decoherence with the effects of static
imperfections.
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The main fundamental obstacles in the realization ofimplemented experimentally with a NMR based quantum
guantum computerd] are external decoherence and internalcomputer{27].
imperfections. The decoherence is produced by couplings be- However, until now the quantum chaos algorithms have
tween the quantum computer and the external weskek, been used only for investigation of unitary error effects. This
e.g., the review2]). The internal imperfections appear due is always true for internal static imperfections but the exter-
to static one-qubit energy shifts and residual couplings benal decoherence generally leads also to dissipative errors.
tween qubits which exist inside the isolated quantum comThe first step in the analysis of dissipative decoherence in
puter. These imperfections may lead to emergence of quamuantum algorithms has been done[28] on a relatively
tum chaos and melting of quantum computer eigenstatesimple example of entanglement teleportation along a quan-
[3,4]. The effects of unitary quantum errors produced by detum register(chain of qubit. After that, this approach was
coherence and imperfections on the accuracy of quantum agpplied to study the fidelity decay in the quantum baker map
gorithms have been studied by different groups using nualgorithm[29]. In [28,29 the decoherence is investigated on
merical modeling of quantum computers performingthe Markovian assumption using the master equation for the
guantum algorithms with about 10—20 qubits. The noisy erdensity matrix written in the Lindblad formi30]. Already
rors in quantum gates produced by external decoherence anéth n,=10-20 qubits in the Hilbert space of sikk- 20 the
analyzed iff5-16] while the errors induced by internal static numerical solution of the exact master equation becomes
imperfections are considered[ib7—23. The analytical treat- enormously complicated due to the large number of variables
ment[21] based on the random matrix theory allows us toin the density matrix, which is equal t4°. Therefore the
compare the accuracy bounds for these two types of erromsnly possibility for numerical studies at largg is to use the
for quantum algorithms simulating complex quantum dy-method of quantum trajectories for which the number of
namics. variables is reduced t®&N with additional averaging over

In fact, a convenient frame for investigation of quantummany trajectories. This quantum Monte Carlo type method
error effects in quantum computations is given by models obppeared as a result of investigations of open dissipative
guantum chao$24]. Such models describe a quantum dy-quantum systems mainly within the field of quantum optics
namics which is chaotic in the classical limit and which hasbut also in quantum measurement theg¢sge the original
a number of nontrivial properties including dynamical local- works [31-34)). More recent developments in this field can
ization of chaos, quantum ergodicity, and mixing in phasebe found in[35-37).
space(see, e.g.[24]). It has been shown that for many such In this paper we investigate the effects of dissipative de-
models the quantum computers with qubits can simulate coherence on the accuracy of the quantum sawtooth map
the quantum evolution of an exponentially large st@e., algorithm. The system Hamiltonian of the exact map reads
with N=2" levelg in a polynomial number of elementary [17,19
quantum gates)y [e.g., withng=0(nj) or ng=0(n3)]. The
guantum algorithms are now available for the quantum baker H«(R, 6) = TH2 +kV(6) >, St —m). (1)
map [25], the kicked rotator{26], the quantum sawtooth m
[17,19 and tent{21] maps, the kicked wavelet rotatft8],
and the quantum double-well m&p0]. Their further gener- Here the first term describes free particle rotation on a ring
alization and development gave quantum algorithms for thavhile the second term gives kicks periodic in time amd
Anderson metal-insulator transitid20], electrons on a lat- =-id/d6. The kick potential isV(6)=—-(8-)?/2 for 0< 6
tice in a magnetic field, and the kicked Harper mold3]. < 2. It is periodically repeated for all othet so that the
The quantum algorithm for the quantum baker map has beewave functiony(6) satisfies the periodic boundary condition
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FIG. 1. Probability distributio'W, over momentum eigenstates
n in the quantum sawtooth ma(8) at time t=30. The quantum
evolution is simulated by the quantum algorithm witf=6 qubits
in presence of dissipative decoherence. The dissipation rate per ga
is '=0.001 and the map parameters kre/3, K=12 with the total
number of statetN=2"1=64. The full curve represents the exact
solution of the Lindblad equatiot). Symbols show the result of
quantum trajectories computation with the number of trajectories
M=20 (+), 50 (O), 200(Xx), and 1000(A). The initial state isn
=0. The logarithm is natural.

Y(O)=y(6+27). The classical limit corresponds to
T—0, k—o with K=kT=const. In these notations the
Planck constant is assumed toxel while T plays the role FIG. 2. (Color onling Top row: Classical phase space distribu-

of ?Il'?\ ef‘flectl\{e cljl(;nenSI(_)nIe_ssdPlan_cE‘)k gobnStant' lecti tion obtained from the classical sawtooth map with a Gaussian av-
e classical dynamics Is described by a symplectic areaéraging over a quantum celN=256 quantum cells inside whole

preserving map classical area; see textSecond row: the corresponding Husimi
_ — _ function for the quantum sawtooth map =8 andI'=0. Third
n=n+k(60-m), €6=6+Tn. (2)  row: the Husimi function obtained withl =50 quantum trajectories

. . o in the presence of dissipative decoherence with Fat®.0005 and
Using the rescaled momentum varialgaTn it is easy to =8. Bottom row: same as for the third row but with=10. Here

see that the dyljam_ics depends only on the chaos parame{]glg_o_5 T=2/N corresponding toL=1 and N=2% guantum
Kh: kT.' T?e motion Is Séable for 4K <0 ang co:cnpletely states in the whole classical area. Columns show distributions av-
¢ aOt_'C or K<-4 and K>0 (See [17] and re erences eraged in the time intervals:<0t<9 (left), 40<t<49 (middle),
therein. The mgp(Z) can be studied on the cylindé¢p 90=<t=<99 (right). The initial state i = 0.1IN. Color represents the
& (==, +=)], which can also be closed to form a torus of gensity from blackblue) (0) to gray(red) (maximal valug.
length 27L, whereL is an integer.

The quantum propagation on one-map lteration is d€fevels on a torus and~1, k=K/T~1 [19]. Here and be-

scribed by a unitary operatdt acting on the wave function |ow the timet is measured in number of map iterations.

2 To study the effects of dissipative decoherence on the
— . ~ A o accuracy of the quantum sawtooth algorithm we follow the
p=Uy=UUgp=e T2 V0, (3 approach with the amplitude damping channel usef28j.

The evolution of the density operatpft) of an open system

under weak Markovian noise is given by the master equation

with Lindblad operatord.,, (m=1,...,ny):

The quantum evolution is considered Nrguantum momen-
tum levels. FoiN=2" this evolution can be implemented on
a quantum computer withy qubits. The quantum algorithm
described if 17] performs one iteration of the quantum map i [ + N

) in ng:3n§+nq elementary quantum gates. It essentially p=- g[Heffp_pHeff] +2 Lol (4)
uses the quantum Fourier transform which allows one to go m

from the momentum to the phase representatiomjim,  where the system Hamiltoniat is related to the effective
+1)/2 gates. The rotation of quantum phases in each repredamiltonianHeg=Hg—i%/23 L1 L, andm marks the qubit
sentation is performed in approximaterhﬁ gates. Here we number. In this paper we assume that the system is coupled
consider the case of one classical ¢trus withL=1 when  to the environment through an amplitude damping channel
T=2mx/N) [17] and the case of dynamical localization with ~ with L,=a,\I", wherea,, is the destruction operator for the
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FIG. 4. (Color online Dependence of the IPR on timet at

FIG. 3. Fidelityf as a function of iteration time The upper two I’ =0.001 andvi=50 shown by full curves fon,=4 [gray (greer)
curves are forl’'=0.0005 and the lower two curves are for  Curvel, 6 [black (blue) curve], and 8(black curve, bottom to top.
=0.001. HereM =50, n,=8, k=2"K /27, andK =—0.5(full curves The dashed curves show the same casds=di (bottom dashed
K=0.5 (dotted curvel respectively. The initial state js=0). The ~ CUrve is forn,=4, top dashed curve is for,=6 and 8 where th¢
inset shows the fidelity decay rateas a function of o =ngngl’ valggs are “gractlcally identigalHere the initial state ifn=0) and
with n,=4, 6, 8. HereK=0.5(+) and K=-0.5(A), respectively. k=v3, K=v2.
The straight line is the best fig=0.08T .

p' = UUrpUTUy. (7)

mth qubit and the dimensionless rdtegives the decay rate
for each qubit per one quantum gate. The fatis the same To include the dissipative noise effects the density matrix
for all qubits. further evolves according to E¢}) with H;=0 between con-

This evolution ofp can be efficiently simulated by aver- secutive quantum gates composidg and U-.
aging over theM quantum trajectories which evolve accord-  To test the accuracy of the method of quantum trajectories
ing to the following stochastic differential equation for stateswe compare its results with the exact solution of the Lind-
[y (a=1,...,M): blad equation for the density matrix(4). The comparison is
done for the case of dynamical localization of quantum chaos

. 1 and is shown in Fig. 1. It shows that the dynamical localiza-
|dy) == TH g dt+ E% (Linkmy = Lk |9t tion is preserved at relatively weak dissipation rAtdt also
shows that the quantum trajectories method correctly repro-
D bm 1]]y#dN (5) duces the exact solution of the Lindblad equation and that it
- \*'<|—Iq|—m>¢ m’ is sufficient to useM =50 trajectories to reproduce correctly

the phenomenon of dynamical localization in the presence of
where( ), represents an expectation value |gf) anddN,,  dissipative decoherence of qubits.

are stochastic differential variables defined in the same way To analyze the effects of the dissipation rétén a more

as in[29] [see Eq.(10) therd. The above equation can be quantitative way we start from the quasi-integrable ciise
solved numerically by quantum Monte CaflIC) methods =-0.5 with one classical cell=1(T=2#/N). The classical

by letting the statéx/®) jump to one ofL,|*)/|L )| states phase space distribution, averaged over a time interval and a
with probability dp,=|Ly|y®[?dt [29] or evolve to Gaussian distribution over a quantum cell with an effective

(1—iHeﬁdt/ﬁ)|zﬁ“>/\s’—1—Emdpﬂ with probability 1-5,dp, Planck constant, is shown in Fig. 2 in the top réhere are

on L )
Then, the density matrix can be approximately expressed =2 quantpm cells |n§|de the whole (;Iassg:allpha.lse s)pace
uch Gaussian averaging of the classical distribution gives a

L M result which is very close to the Husimi function in the cor-
p(t) = ([Pt )y = => [ () g (1), (6) responding quantum case Bt0 (Fig. 2, second royv We
M1 recall that the Husimi function is obtained by a Gaussian
averaging of the Wigner function over a quanténsell (see
where()y represents the ensemble average dequantum  [3g] for detaild. In our case the Husimi functioh(é,n) is
trajectoriegy(t)). Hence, the expectation value of an opera-computed through the wave function of each quantum trajec-
tor O is given by(O)=Tr(Op) =(O)u. tory and after that it is averaged over Ml trajectories. The
For the quantum sawtooth algorithm the dissipative noiseffect of dissipative decoherence wittx0.0005 is shown in
is introduced in the quantum trajectory contgit. (6)] after  the third row of Fig. 2. At’'=0 the phase space distribution
each elementary quantum gate and calculated by MC metliemains approximately stationary in time while foe>0 it
ods. The same physical process can be described by densttarts to spread so that at large times the typical structure of
matrix theory. The evolution of the density matrix after athe classical phase space becomes completely washed out.
single iteration of the quantum sawtooth map is described bifhis destructive process becomes more rapid with the in-
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FIG. 5. (Color online Dependence of the ratio gfto its value
& in the ideal algorithm on the dissipative decoherence Fater
ng=4 [gray (green, O], 6 [black (blue), x], 8 (black, 4 from
bottom to top. The valuesand ¢, are averaged in the time interval
30=<t=40. Other parameters are as in Fig. 4.

crease of the number of qubits ever'iremains fixed Fig.
2, bottom row. One of the reasons is thhtis defined as a
rate per gate and the number of gatgs 3n§+ Ny grows with 7
ng. However, this is not the only reason as it shows the
analysis of the fidelity decay. |
The fidelity f of quantum algorithm in the presence of =
dissipative decoherence is defined as

SR . oS

3 = S S
‘4
_ -

FIG. 6. (Color onling Each panel shows the Husimi distribution
for the quantum sawtooth map algorithm wik=1, T=27/2",
and ny=8. The top three rows show the cases with the rdtes
=0.01, 0.05, and 0.1, respectively, from top to third row. The initial
! : . 4 state isin=60) andM =50. The distribution is averaged in the time
rithm andp(t) is the density matrix of the quantum computer interval 0<t<9 (left column, 40<t<49 (middle colump, 90

1
f(0) = o lpOlo®) ~ 2 Ko, (8)
where|;(t)) is the wave function given by the exact algo-

in the presence of decoherence; both are taken &fté&p  <t<99 (right column. The bottom row shows the distribution for

iterations. Herep(t) is expressed approximately through a another initial staten=0) averaged in the time interval S0t

sum over guantum trajectorig¢see alsd?29]). <99 for I'=0.01 (left pane), 0.05 (middle panel, and 0.1(right

The dependence of fideliti(t) on timet is shown in Fig.  pane) (compare with the right column of top three row€olor

3. At relatively short timet <50 the decay is approximately represents the density from blag@iue) (0) to gray (red (maximal

exponentialf(t) = exp(—1t). The decay rate is described by  value.

the relation

exp(-Cngngl") after ny gates leading to the relatiof®). In

principle, one may expect that the decayf(j is sensitive to

a number of qubit up states in a given wave function since

there is no decay for qubit down states. However, in the
ntext of a concrete algorithm this number varies in time

nd only its average value contributes to the global fidelity

(9)

whereC=0.08 is a numerical constafgee Fig. 3 inset The
important result of Fig. 3 is that the decay fdf) is not very
sensitive to the map parameters. Indeed, it is not affected b
a change oK which significantly modifies the classical dy-

y=Cle=Cnyngl’,

namics, which is quasi-integrable kt=-0.5 and fully cha-
otic at K=0.5. Another important result is that up to a nu-
merical constant the relatiof®) follows the dependence

found in[29] for the quantum baker map. This shows that the

ecay.

The result(9) gives the time scalg of reliable quantum
computation in the presence of dissipative decoherence. On
this scale the fidelity should be close to unig.g.,f=0.9),

dependenceg9) is really universal. Its physical origin is which gives

rather simple. After one gate the probability of a qubit to
stay in the upper state drops by a factor @Ap for each
qubit (we recall thatl is defined as a per gate decay jate HereNg=ngt is the total number of quantum gates that can
The wave function of the total system is given by abe performed with high fidelityf>0.9) at givenny andT".
product of wave functions of individual qubits that leads The comparison with the results obtained for static imperfec-
to a fidelity drop by a factor expCn,I') after one gate and tions[21] of strengthe shows that for thenNy drops more

ti = 1/(ngngl’),  Ng=1/nyl"). (10
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rapidly with ng:Ng~ 1/(eznqng). Therefore the static imper- becomes more complicated with a decreasE (fecond row
fections destroy the accuracy of quantum computation in @ Fig. 6 atI’=0.05. And at even smallef’'=0.01 the sta-
more rapid way compared to dissipative decoherence. tionary state shows a complex structure in the phase space
It is also interesting to analyze the effects of dissipative(top row in Fig. . It is important to stress that this structure
decoherence on the dynamical localization. For that, in addiis independent of the initial stat&ottom row in Fig. 6. In
tion to the probability distribution as in Fig. 1, it is conve- this sense we may say that in such a case the dissipative
nient to use the inverse participation rati®R) defined as decoherence leads to appearance of a quantum strange attrac-
E=1/3||* =11 (| hHml? where(|- - -|)y denotes the av-  tor in the quantum algorithm. Of course, this stationary quan-
erage overM quantum trajectories. This quantity is often tum attractor state is very different from the Husimi distribu-
used in problems with localized wave functions. In fgct tion generated by the ideal quantum algorithm. However, it
gives the effective number of states over which the totaimay be of certain interest to use the dissipative decoherence
probability is distributed. The dependenceébn timet is  in quantum algorithms for investigation of quantum strange
shown in Fig. 4. It shows that in the presence of dissipativesttractors which have been discussed in the context of quan-
decoherence the dynamical localization is destroyed. Indeegym chaos and dissipatioisee, e.g., Ref§39-41). At the
at larget the value of¢ grows with ny while for the ideal  same time we should note that the dissipation induced by
algorithm it is independent afi;. The physical meaning of gecoherence acts during each gate which makes its effect

this effect is rather clear. As in Fig. 2 the dissipative deco+4ther nontrivial due to change of representations in the map
herence introduces some noise which destroys localization g

However, there is also another effect which becomes vis-
ible at relatively largd’. It is shown in Fig. 5 which gives
the ratio of¢ to its valueé, in the ideal algorithm. Thus, at
smallT" the ratio&/ &, grows with the increase df while it
starts to drop at larg€. This is a manifestation of the fact

In conclusion, our studies determine the fidelity decay law
in the presence of dissipative decoherence which is in agree-
ment with the results obtained {29] for a very different
quantum algorithm. This confirms the universal nature of the

; ) el , established fidelity decay law. These studies also show that at
that in the absence of the algorithm the d|53|pat_|0n_dr|ves théhoderate strength the dissipative decoherence destroys dy-
quantum register to the stafe=0) with all qubits in the amical localization while a strong dissipation leads to local-
down state. Even in the presence of the quantum algorithmy a0 and the appearance of a complex or simple attractor.
this dissipative effect becomes dominant at lafgdeading  The effects of dissipative decoherence are compared with the

to a decrease of the rat#l &,.
The dissipative effect of decoherence at large valuds of

effects of static imperfections and it is shown that in the
absence of quantum error correction the latter give more re-

is also clearly seen in the case of quantum chaos ergodic iyrictions on the accuracy of quantum computations with a

one classical cellL=1). At largeI" the Husimi distribution
relaxes to the stationary state induced by dissipafierO)
(third row in Fig. 6 atl’'=0.1). In a sense this corresponds to

large number of qubits.
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a simple attractor in the phase space. The stationary stafgoject EDIQIP.
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