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Using the methods of quantum trajectories we investigate the effects of dissipative decoherence in a quan-
tum computer algorithm simulating dynamics in various regimes of quantum chaos including dynamical
localization, the quantum ergodic regime, and quasi-integrable motion. As an example we use the quantum
sawtooth algorithm which can be implemented in a polynomial number of quantum gates. It is shown that the
fidelity of quantum computation decays exponentially with time and that the decay rate is proportional to the
number of qubits, number of quantum gates, and per gate dissipation rate induced by external decoherence. In
the limit of strong dissipation the quantum algorithm generates a quantum attractor which may have a complex
or simple structure. We also compare the effects of dissipative decoherence with the effects of static
imperfections.
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The main fundamental obstacles in the realization of
quantum computersf1g are external decoherence and internal
imperfections. The decoherence is produced by couplings be-
tween the quantum computer and the external worldssee,
e.g., the reviewf2gd. The internal imperfections appear due
to static one-qubit energy shifts and residual couplings be-
tween qubits which exist inside the isolated quantum com-
puter. These imperfections may lead to emergence of quan-
tum chaos and melting of quantum computer eigenstates
f3,4g. The effects of unitary quantum errors produced by de-
coherence and imperfections on the accuracy of quantum al-
gorithms have been studied by different groups using nu-
merical modeling of quantum computers performing
quantum algorithms with about 10–20 qubits. The noisy er-
rors in quantum gates produced by external decoherence are
analyzed inf5–16g while the errors induced by internal static
imperfections are considered inf17–23g. The analytical treat-
ment f21g based on the random matrix theory allows us to
compare the accuracy bounds for these two types of errors
for quantum algorithms simulating complex quantum dy-
namics.

In fact, a convenient frame for investigation of quantum
error effects in quantum computations is given by models of
quantum chaosf24g. Such models describe a quantum dy-
namics which is chaotic in the classical limit and which has
a number of nontrivial properties including dynamical local-
ization of chaos, quantum ergodicity, and mixing in phase
spacessee, e.g.,f24gd. It has been shown that for many such
models the quantum computers withnq qubits can simulate
the quantum evolution of an exponentially large statese.g.,
with N=2nq levelsd in a polynomial number of elementary
quantum gatesng fe.g., with ng=Osnq

2d or ng=Osnq
3dg. The

quantum algorithms are now available for the quantum baker
map f25g, the kicked rotatorf26g, the quantum sawtooth
f17,19g and tentf21g maps, the kicked wavelet rotatorf18g,
and the quantum double-well mapf10g. Their further gener-
alization and development gave quantum algorithms for the
Anderson metal-insulator transitionf20g, electrons on a lat-
tice in a magnetic field, and the kicked Harper modelf23g.
The quantum algorithm for the quantum baker map has been

implemented experimentally with a NMR based quantum
computerf27g.

However, until now the quantum chaos algorithms have
been used only for investigation of unitary error effects. This
is always true for internal static imperfections but the exter-
nal decoherence generally leads also to dissipative errors.
The first step in the analysis of dissipative decoherence in
quantum algorithms has been done inf28g on a relatively
simple example of entanglement teleportation along a quan-
tum registerschain of qubitsd. After that, this approach was
applied to study the fidelity decay in the quantum baker map
algorithmf29g. In f28,29g the decoherence is investigated on
the Markovian assumption using the master equation for the
density matrix written in the Lindblad formf30g. Already
with nq=10–20 qubits in the Hilbert space of sizeN=2q

n the
numerical solution of the exact master equation becomes
enormously complicated due to the large number of variables
in the density matrix, which is equal toN2. Therefore the
only possibility for numerical studies at largenq is to use the
method of quantum trajectories for which the number of
variables is reduced toN with additional averaging over
many trajectories. This quantum Monte Carlo type method
appeared as a result of investigations of open dissipative
quantum systems mainly within the field of quantum optics
but also in quantum measurement theoryssee the original
works f31–34gd. More recent developments in this field can
be found inf35–37gd.

In this paper we investigate the effects of dissipative de-
coherence on the accuracy of the quantum sawtooth map
algorithm. The system Hamiltonian of the exact map reads
f17,19g

Hssn̂,ud = Tn̂2/2 + kVsudo
m

dst − md. s1d

Here the first term describes free particle rotation on a ring
while the second term gives kicks periodic in time andn̂
=−i ] /]u. The kick potential isVsud=−su−pd2/2 for 0øu
,2p. It is periodically repeated for all otheru so that the
wave functioncsud satisfies the periodic boundary condition
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csud=csu+2pd. The classical limit corresponds to
T→0, k→` with K=kT=const. In these notations the
Planck constant is assumed to be"=1 while T plays the role
of an effective dimensionless Planck constant.

The classical dynamics is described by a symplectic area-
preserving map

n̄ = n + ksu − pd, ū = u + Tn̄. s2d

Using the rescaled momentum variablep=Tn it is easy to
see that the dynamics depends only on the chaos parameter
K=kT. The motion is stable for −4,K,0 and completely
chaotic for K,−4 and K.0 ssee f17g and references
thereind. The map s2d can be studied on the cylinderfp
P s−` , +`dg, which can also be closed to form a torus of
length 2pL, whereL is an integer.

The quantum propagation on one-map iteration is de-

scribed by a unitary operatorÛ acting on the wave function
c:

c̄ = Ûc = ÛTÛkc = e−iTn̂2/2e−ikVsudc. s3d

The quantum evolution is considered onN quantum momen-
tum levels. ForN=2nq this evolution can be implemented on
a quantum computer withnq qubits. The quantum algorithm
described inf17g performs one iteration of the quantum map
s3d in ng=3nq

2+nq elementary quantum gates. It essentially
uses the quantum Fourier transform which allows one to go
from the momentum to the phase representation innqsnq

+1d /2 gates. The rotation of quantum phases in each repre-
sentation is performed in approximatelynq

2 gates. Here we
consider the case of one classical cellstorus withL=1 when
T=2p /Nd f17g and the case of dynamical localization withN

levels on a torus andK,1, k=K /T,1 f19g. Here and be-
low the timet is measured in number of map iterations.

To study the effects of dissipative decoherence on the
accuracy of the quantum sawtooth algorithm we follow the
approach with the amplitude damping channel used inf29g.
The evolution of the density operatorrstd of an open system
under weak Markovian noise is given by the master equation
with Lindblad operatorsLm sm=1,… ,nqd:

ṙ = −
i

"
fHeffr − rHeff

† g + o
m

LmrLm
† , s4d

where the system HamiltonianHs is related to the effective
HamiltonianHeff;Hs− i" /2omLm

† Lm andm marks the qubit
number. In this paper we assume that the system is coupled
to the environment through an amplitude damping channel
with Lm= âm

ÎG, whereâm is the destruction operator for the

FIG. 1. Probability distributionWn over momentum eigenstates
n in the quantum sawtooth maps3d at time t=30. The quantum
evolution is simulated by the quantum algorithm withnq=6 qubits
in presence of dissipative decoherence. The dissipation rate per gate
is G=0.001 and the map parameters arek=Î3, K=Î2 with the total
number of statesN=2nq=64. The full curve represents the exact
solution of the Lindblad equations4d. Symbols show the result of
quantum trajectories computation with the number of trajectories
M =20 s+d, 50 ssd, 200 s3d, and 1000snd. The initial state isn
=0. The logarithm is natural.

FIG. 2. sColor onlined Top row: Classical phase space distribu-
tion obtained from the classical sawtooth map with a Gaussian av-
eraging over a quantum cellsN=256 quantum cells inside whole
classical area; see textd. Second row: the corresponding Husimi
function for the quantum sawtooth map atnq=8 andG=0. Third
row: the Husimi function obtained withM =50 quantum trajectories
in the presence of dissipative decoherence with rateG=0.0005 and
nq=8. Bottom row: same as for the third row but withnq=10. Here
K=−0.5,T=2p /N corresponding toL=1 and N=2nq quantum
states in the whole classical area. Columns show distributions av-
eraged in the time intervals: 0ø tø9 sleftd, 40ø tø49 smiddled,
90ø tø99 srightd. The initial state isn<0.1N. Color represents the
density from blacksblued s0d to gray sredd smaximal valued.
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mth qubit and the dimensionless rateG gives the decay rate
for each qubit per one quantum gate. The rateG is the same
for all qubits.

This evolution ofr can be efficiently simulated by aver-
aging over theM quantum trajectories which evolve accord-
ing to the following stochastic differential equation for states
ucal sa=1,… ,Md:

udcal = − iHsucaldt +
1

2o
m

skLm
† Lmlc − Lm

† Lmducaldt

+ o
m
S Lm

ÎkLm
† Lmlc

− 1DucaldNm, s5d

wherek lc represents an expectation value onucal anddNm

are stochastic differential variables defined in the same way
as in f29g fsee Eq.s10d thereg. The above equation can be
solved numerically by quantum Monte CarlosMCd methods
by letting the stateucal jump to one ofLmucal / uLmucalu states
with probability dpm;uLmucalu2dt f29g or evolve to
s1−iHeffdt/"ducal /Î1−omdpm with probability 1−omdpm.
Then, the density matrix can be approximately expressed as

rstd < kucstdlkcstdulM =
1

M
o
a=1

M

ucastdlkcastdu, s6d

wherek lM represents the ensemble average overM quantum
trajectoriesucastdl. Hence, the expectation value of an opera-
tor O is given bykOl=TrsOrd<kOlM.

For the quantum sawtooth algorithm the dissipative noise
is introduced in the quantum trajectory contextfEq. s6dg after
each elementary quantum gate and calculated by MC meth-
ods. The same physical process can be described by density
matrix theory. The evolution of the density matrix after a
single iteration of the quantum sawtooth map is described by

r8 = UkUTrUT
†Uk

†. s7d

To include the dissipative noise effects the density matrix
further evolves according to Eq.s4d with Hs=0 between con-
secutive quantum gates composingUk andUT.

To test the accuracy of the method of quantum trajectories
we compare its results with the exact solution of the Lind-
blad equation for the density matrixr s4d. The comparison is
done for the case of dynamical localization of quantum chaos
and is shown in Fig. 1. It shows that the dynamical localiza-
tion is preserved at relatively weak dissipation rateG. It also
shows that the quantum trajectories method correctly repro-
duces the exact solution of the Lindblad equation and that it
is sufficient to useM =50 trajectories to reproduce correctly
the phenomenon of dynamical localization in the presence of
dissipative decoherence of qubits.

To analyze the effects of the dissipation rateG in a more
quantitative way we start from the quasi-integrable caseK
=−0.5 with one classical cellL=1 sT=2p /Nd. The classical
phase space distribution, averaged over a time interval and a
Gaussian distribution over a quantum cell with an effective
Planck constant, is shown in Fig. 2 in the top rowsthere are
N=2nq quantum cells inside the whole classical phase spaced.
Such Gaussian averaging of the classical distribution gives a
result which is very close to the Husimi function in the cor-
responding quantum case atG=0 sFig. 2, second rowd. We
recall that the Husimi function is obtained by a Gaussian
averaging of the Wigner function over a quantum" cell ssee
f38g for detailsd. In our case the Husimi functionhsu ,nd is
computed through the wave function of each quantum trajec-
tory and after that it is averaged over allM trajectories. The
effect of dissipative decoherence withG=0.0005 is shown in
the third row of Fig. 2. AtG=0 the phase space distribution
remains approximately stationary in time while forG.0 it
starts to spread so that at large times the typical structure of
the classical phase space becomes completely washed out.
This destructive process becomes more rapid with the in-

FIG. 3. Fidelity f as a function of iteration timet. The upper two
curves are forG=0.0005 and the lower two curves are forG
=0.001. HereM =50, nq=8, k=2nqK /2p, andK=−0.5sfull curvesd
K=0.5 sdotted curvesd, respectively. The initial state isun=0l. The
inset shows the fidelity decay rateg as a function ofGeff;nqngG
with nq=4, 6, 8. HereK=0.5s+d and K=−0.5 sDd, respectively.
The straight line is the best fitg=0.08Geff.

FIG. 4. sColor onlined Dependence of the IPRj on time t at
G=0.001 andM =50 shown by full curves fornq=4 fgray sgreend
curveg, 6 fblack sblued curveg, and 8sblack curved, bottom to top.
The dashed curves show the same cases atG=0 sbottom dashed
curve is fornq=4, top dashed curve is fornq=6 and 8 where thej
values are practically identicald. Here the initial state isun=0l and
k=Î3, K=Î2.
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crease of the number of qubits even ifG remains fixedsFig.
2, bottom rowd. One of the reasons is thatG is defined as a
rate per gate and the number of gatesng=3nq

2+nq grows with
nq. However, this is not the only reason as it shows the
analysis of the fidelity decay.

The fidelity f of quantum algorithm in the presence of
dissipative decoherence is defined as

fstd ; kc0stdurstduc0stdl <
1

M
o
a

zkc0stducG
astdlz2, s8d

where uc0stdl is the wave function given by the exact algo-
rithm andrstd is the density matrix of the quantum computer
in the presence of decoherence; both are taken aftert map
iterations. Here,rstd is expressed approximately through a
sum over quantum trajectoriesssee alsof29gd.

The dependence of fidelityfstd on timet is shown in Fig.
3. At relatively short timet,50 the decay is approximately
exponentialfstd<exps−gtd. The decay rateg is described by
the relation

g = CGeff = CnqngG, s9d

whereC=0.08 is a numerical constantssee Fig. 3 insetd. The
important result of Fig. 3 is that the decay offstd is not very
sensitive to the map parameters. Indeed, it is not affected by
a change ofK which significantly modifies the classical dy-
namics, which is quasi-integrable atK=−0.5 and fully cha-
otic at K=0.5. Another important result is that up to a nu-
merical constant the relations9d follows the dependence
found inf29g for the quantum baker map. This shows that the
dependences9d is really universal. Its physical origin is
rather simple. After one gate the probability of a qubit to
stay in the upper state drops by a factor exps−Gd for each
qubit swe recall thatG is defined as a per gate decay rated.
The wave function of the total system is given by a
product of wave functions of individual qubits that leads
to a fidelity drop by a factor exps−CnqGd after one gate and

exps−CnqngGd after ng gates leading to the relations9d. In
principle, one may expect that the decay offstd is sensitive to
a number of qubit up states in a given wave function since
there is no decay for qubit down states. However, in the
context of a concrete algorithm this number varies in time
and only its average value contributes to the global fidelity
decay.

The results9d gives the time scaletf of reliable quantum
computation in the presence of dissipative decoherence. On
this scale the fidelity should be close to unityse.g., f =0.9d,
which gives

tf < 1/snqngGd, Ng = 1/snqGd. s10d

Here Ng=ngt is the total number of quantum gates that can
be performed with high fidelitysf .0.9d at givennq andG.
The comparison with the results obtained for static imperfec-
tions f21g of strengthe shows that for themNg drops more

FIG. 5. sColor onlined Dependence of the ratio ofj to its value
j0 in the ideal algorithm on the dissipative decoherence rateG for
nq=4 fgray sgreend, sg, 6 fblack sblued, 3g, 8 sblack, +d from
bottom to top. The valuesj andj0 are averaged in the time interval
30ø tø40. Other parameters are as in Fig. 4.

FIG. 6. sColor onlined Each panel shows the Husimi distribution
for the quantum sawtooth map algorithm withK=1, T=2p /2nq,
and nq=8. The top three rows show the cases with the ratesG
=0.01, 0.05, and 0.1, respectively, from top to third row. The initial
state isun=60l andM =50. The distribution is averaged in the time
interval 0ø tø9 sleft columnd, 40ø tø49 smiddle columnd, 90
ø tø99 sright columnd. The bottom row shows the distribution for
another initial stateun=0l averaged in the time interval 90ø t
ø99 for G=0.01 sleft paneld, 0.05 smiddle paneld, and 0.1sright
paneld scompare with the right column of top three rowsd. Color
represents the density from blacksblued s0d to graysredd smaximal
valued.

J. W. LEE AND D. L. SHEPELYANSKY PHYSICAL REVIEW E71, 056202s2005d

056202-4



rapidly with nq:Ng,1/se2nqngd. Therefore the static imper-
fections destroy the accuracy of quantum computation in a
more rapid way compared to dissipative decoherence.

It is also interesting to analyze the effects of dissipative
decoherence on the dynamical localization. For that, in addi-
tion to the probability distribution as in Fig. 1, it is conve-
nient to use the inverse participation ratiosIPRd defined as
j=1/onucnu4.1/onzkucnu2lMz2 whereku¯ ulM denotes the av-
erage overM quantum trajectories. This quantity is often
used in problems with localized wave functions. In factj
gives the effective number of states over which the total
probability is distributed. The dependence ofj on time t is
shown in Fig. 4. It shows that in the presence of dissipative
decoherence the dynamical localization is destroyed. Indeed,
at larget the value ofj grows with nq while for the ideal
algorithm it is independent ofnq. The physical meaning of
this effect is rather clear. As in Fig. 2 the dissipative deco-
herence introduces some noise which destroys localization.

However, there is also another effect which becomes vis-
ible at relatively largeG. It is shown in Fig. 5 which gives
the ratio ofj to its valuej0 in the ideal algorithm. Thus, at
small G the ratioj /j0 grows with the increase ofG while it
starts to drop at largeG. This is a manifestation of the fact
that in the absence of the algorithm the dissipation drives the
quantum register to the stateun=0l with all qubits in the
down state. Even in the presence of the quantum algorithm
this dissipative effect becomes dominant at largeG, leading
to a decrease of the ratioj /j0.

The dissipative effect of decoherence at large values ofG
is also clearly seen in the case of quantum chaos ergodic in
one classical cellsL=1d. At large G the Husimi distribution
relaxes to the stationary state induced by dissipationun=0l
sthird row in Fig. 6 atG=0.1d. In a sense this corresponds to
a simple attractor in the phase space. The stationary state

becomes more complicated with a decrease ofG ssecond row
in Fig. 6 at G=0.05d. And at even smallerG=0.01 the sta-
tionary state shows a complex structure in the phase space
stop row in Fig. 6d. It is important to stress that this structure
is independent of the initial statesbottom row in Fig. 6d. In
this sense we may say that in such a case the dissipative
decoherence leads to appearance of a quantum strange attrac-
tor in the quantum algorithm. Of course, this stationary quan-
tum attractor state is very different from the Husimi distribu-
tion generated by the ideal quantum algorithm. However, it
may be of certain interest to use the dissipative decoherence
in quantum algorithms for investigation of quantum strange
attractors which have been discussed in the context of quan-
tum chaos and dissipationssee, e.g., Refs.f39–41gd. At the
same time we should note that the dissipation induced by
decoherence acts during each gate which makes its effect
rather nontrivial due to change of representations in the map
s3d.

In conclusion, our studies determine the fidelity decay law
in the presence of dissipative decoherence which is in agree-
ment with the results obtained inf29g for a very different
quantum algorithm. This confirms the universal nature of the
established fidelity decay law. These studies also show that at
moderate strength the dissipative decoherence destroys dy-
namical localization while a strong dissipation leads to local-
ization and the appearance of a complex or simple attractor.
The effects of dissipative decoherence are compared with the
effects of static imperfections and it is shown that in the
absence of quantum error correction the latter give more re-
strictions on the accuracy of quantum computations with a
large number of qubits.
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project EDIQIP.
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